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Abstract: Cd(II) and Cu(II) ions cause many diseases in humans. Therefore, they should be removed
from water sources using simple and cost-effective adsorbents. Consequently, sodium magnesium
silicate hydroxide/sodium magnesium silicate hydrate nanostructures were synthesized and function-
alized using 2,3-dihydroxybenzaldehyde as a novel nanocomposite. Several instruments were used
to characterize the synthetic products, such as an X-ray diffractometer (XRD), a Fourier-transform
infrared spectrophotometer (FT-IR), an N2 adsorption/desorption analyzer, a CHN elemental ana-
lyzer, an energy-dispersive X-ray spectrophotometer (EDS), and a field emission scanning electron
microscope (FE-SEM). The functionalization of the nanostructures with 2,3-dihydroxybenzaldehyde
led to the disappearance of the XRD peaks of the nanostructures and the presence of a broad XRD
peak at 2θ = 32◦. In addition, the FE-SEM images revealed that the nanostructures consisted of
spheres, cubes, and irregular shapes with an average grain size of 115 nm, and the nanocomposite
consisted of spherical conglomerates consisting of needle-like shapes. The anticipated morphology
following the functionalization of the nanostructures with 2,3-dihydroxybenzaldehyde resulted from
the presence of 2,3-dihydroxybenzaldehyde on the backbones of the nanostructures. The EDS results
showed that the nanostructures were composed of O, Na, Mg, and Si with weight percentages equal
to 38.59%, 5.95%, 16.60%, and 38.86%, respectively. Additionally, the nanocomposite was composed
of C, N, O, Na, Mg, and Si with weight percentages equal to 55.31%, 2.23%, 30.09%, 6.56%, 2.98%,
and 12.83%, respectively. The synthesized nanostructures and nanocomposite samples were utilized
for the efficient removal of cadmium and copper ions from aqueous media using the ion exchange
and chelation adsorption procedures, respectively. Optimum conditions for removing the cadmium
and copper ions were achieved at a pH, time, and temperature equal to 7.5, 80 min, and 298 K,
respectively. The maximum uptake capacities of the synthesized nanostructures and nanocomposite
samples toward cadmium ions were 89.44 mg/g and 155.04 mg/g, respectively, and the maximum
uptake capacities of the synthesized nanostructures and nanocomposite samples toward copper
ions were 103.73 mg/g and 177.94 mg/g, respectively. Moreover, the adsorption processes were
exothermic, chemical, and followed the pseudo-second-order model and Langmuir equilibrium
isotherm model.

Keywords: sodium magnesium silicate hydroxide; sodium magnesium silicate hydrate; nanostructures;
nanocomposites; adsorption

Separations 2023, 10, 88. https://doi.org/10.3390/separations10020088 https://www.mdpi.com/journal/separations

https://doi.org/10.3390/separations10020088
https://doi.org/10.3390/separations10020088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/separations
https://www.mdpi.com
https://doi.org/10.3390/separations10020088
https://www.mdpi.com/journal/separations
https://www.mdpi.com/article/10.3390/separations10020088?type=check_update&version=2


Separations 2023, 10, 88 2 of 29

1. Introduction

The rapid progress in industrialization has led to the presence of many heavy metals
in water sources, and these pose a global threat to the environment and human health [1–3].
In addition to natural sources such as volcanic eruptions and weathering sedimentation,
anthropogenic activities such as the wastewater discharged from the pigment, paint, chem-
ical, and electroplating industries can release substantial amounts of heavy metals into the
ecological environment. The metal smelting process is one of the main sources of heavy
metal contamination. Heavy metal ions such as Zn(II), As(III), Cu(II), Pb(II), and Cd(II)
are found in high concentrations in wastewater from the smelting process [4–6]. In terms
of environmental sustainability, stringent discharge standards for industrial wastewater
have been proposed. Moreover, the unregulated deposits and exhaust gases produced
during the smelting process cause heavy metal contamination in groundwater and surface
water due to rain leaching. Because of its known toxicity to humans, the Cd(II) ions in
the effluents of various industries are regarded as one of the most hazardous pollutants.
Symptoms include vomiting, nausea, diarrhea, damage to bone marrow, loss of calcium
from bones, reduction in red blood cells, kidney failure, hypertension, loss of sense, and
chest pain [7,8]. In addition, exposure to Cu(II) ions can cause stomach pain, headache,
and eye irritation [9]. Consequently, it is of the utmost importance to develop efficient
techniques for removing heavy metals from wastewater. A variety of physicochemical
techniques, including flotation, precipitation, membrane processing, and adsorption, have
been used to extract heavy metals ions from aqueous media [10–12]. Most of them have
disadvantages, such as high operational costs, sludge production, and laborious procedures.
Adsorption has been viewed as a competitive and promising approach for the extraction of
heavy metals from aqueous media due to the wide availability of substances and ease of
operation. The choice of adsorbent is the main factor in this approach in terms of efficiency
and treatment cost [13–17]. Numerous types of adsorbents, including biochar, covalent
organic frameworks, zeolites, and polymers, can effectively remove heavy metal ions from
wastewater [18–21]. Due to their high surface area and the presence of hydroxyl groups on
their surfaces, several studies have concentrated on the surface modification of nanomateri-
als using organic molecules such as humic acid, chitosan, diethylenetriaamine, thioglycolic
acid, 3-bromo-5-chlorosalicylaldehyde, and 1-hydroxy-2-acetonaphthone for the simple
separation of heavy metals by chelation with high adsorption capacity [13–15,22,23]. These
functionalized nanomaterials have been observed to be economical, chemically stable, and
environmentally safe. Therefore, it is anticipated that novel materials will be synthesized to
increase the capacity adsorb heavy metal ions. The innovative aspects of the present work
are as follows: (1) The simple and inexpensive synthesis of sodium magnesium silicate
hydroxide/sodium magnesium silicate hydrate to form new nanostructures. (2) The facile
functionalization of synthesized nanostructures using 2,3-dihydroxybenzaldehyde as a
novel nanocomposite for the efficient removal of Cd(II) and Cu(II) ions from aqueous
media. (3) Solving an environmental pollution problem by removing toxic metal ions in an
effective, simple, and inexpensive way. Several instruments were used to characterize the
synthetic products such as an aX-ray diffractometer (XRD), a Fourier-transform infrared
spectrophotometer (FT-IR), an N2 adsorption/desorption analyzer, a CHN elemental ana-
lyzer, an energy-dispersive X-ray spectrophotometer (EDS), and a field emission scanning
electron microscope (FE-SEM). Factors affecting the adsorption of Cd(II) and Cu(II) ions,
such as contact time, pH, concentration, and the adsorbent dose, were also studied.

2. Experimental
2.1. Chemicals

Sodium metasilicate pentahydrate (Na2SiO3·5H2O), magnesium nitrate hexahydrate
(Mg(NO3)2·6H2O), 2,3-dihydroxybenzaldehyde (C7H6O3), toluene (C7H8), sulfuric acid
(H2SO4), cadmium(II) chloride monohydrate (CdCl2·H2O), copper(II) chloride dihydrate
(CuCl2·2H2O), thiourea (CH4N2S), nitric acid (HNO3), hydrochloric acid (HCl), ethylene-
diaminetetraacetic acid disodium salt dihydrate (C10H14N2Na2O8·2H2O), and sodium
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hydroxide (NaOH) were obtained from Sigma Aldrich Company and utilized without
additional chemical refining.

2.2. Synthesis
2.2.1. Synthesis of Sodium Magnesium Silicate Hydroxide/Sodium Magnesium Silicate
Hydrate Nanostructures

About 8 g of Na2SiO3·5H2O was dissolved in 90 mL of distilled water. Additionally,
3.65 g of Mg(NO3)2·6H2O was dissolved in 90 mL of distilled water. Afterward, the
magnesium nitrate solution was added dropwise to the sodium metasilicate solution with
continuous stirring for 1 h. The white precipitate that formed was centrifuged, washed
using distilled water, and dried at 60 ◦C for 6 h. The obtained nanostructures were
abbreviated as F1.

2.2.2. Functionalization of Sodium Magnesium Silicate Hydroxide/Sodium Magnesium
Silicate Hydrate Nanostructures Using 2,3-Dihydroxybenzaldehyde

About 4 g of sodium magnesium silicate hydroxide/sodium magnesium silicate
hydrate nanostructures were stirred for 10 min in 40 mL of toluene, and then 4 mL of
(3-aminopropyl)trimethoxysilane was added. Afterward, the mixture was refluxed at
160 ◦C for 24 h and the nanostructures modified by (3-aminopropyl)trimethoxysilane
were centrifuged, washed carefully with distilled water, and dried at 60 ◦C. Addition-
ally, the nanostructures modified by (3-aminopropyl)trimethoxysilane and 4 g of 2,3-
dihydroxybenzaldehyde were refluxed at 160 ◦C for 24 h in the presence of a few drops
of H2SO4 using 40 mL of toluene. The resulting nanocomposite was centrifuged, washed
carefully with distilled water, and dried at 60 ◦C for 6 h. The obtained nanocomposites
were abbreviated as F1S.

Scheme 1 represents the functionalization of sodium magnesium silicate hydrox-
ide/sodium magnesium silicate hydrate nanostructures using 2,3-dihydroxybenzaldehyde.
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Scheme 1. Functionalization of sodium magnesium silicate hydroxide/sodium magnesium silicate
hydrate nanostructures using 2,3-dihydroxybenzaldehyde.

2.3. Instrumentation

Using a Bruker D8 Advance instrument and a CuKα wavelength of 1.54 Å, the crys-
talline structures of the F1 and F1S samples were analyzed by X-ray diffraction (XRD).
Using a JEOL 6510LA microscope equipped with a 10 kV accelerating voltage, the surface
morphologies of the F1 and F1S samples were examined with scanning electron microscopy
(SEM). Energy-dispersive X-ray analysis (EDX) was performed using an X-ray analyzer
coupled to a scanning electron microscope. The pore characteristics and BET surface areas
of the F1 and F1S samples were determined using N2 adsorption/desorption analysis
performed at −196 ◦C on a Quantachrome NOVA Touch LX2 instrument. To ensure a clean
surface prior to the measurement, the samples were degassed for 12 h at 60 ◦C. The Fourier
transform infrared (FT-IR) measurements of the F1 and F1S samples were carried out with
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a Nicolet iS50 FT-IR spectrometer using KBr pellets. CHN analysis of the F1S sample was
carried out by means of a 2400 PerkinElmer CHN elemental analyzer. The concentrations
of the Cd(II) and Cu(II) solutions were determined using a Shimadzu AA-7000F atomic
absorption spectrophotometer.

2.4. Removal of Copper and Cadmium Ions from Aqueous Media

Several factors affecting the uptake of Cu(II) and Cd(II) ions were studied by mixing
a specific amount of the F1 or F1S adsorbent with Cu(II) and Cd(II) solutions and then
stirring them for a specific period according to Table 1.

Table 1. Experimental conditions for the uptake of Cu(II) and Cd(II) ions using the F1 and
F1S samples.

Parameter Co (mg/L) V (mL) M (g) Vd (mL)

pH (2.5–7.5) 200 40 0.04 —

Time (10–120 min) 200 40 0.04 —

Concentration (80–280 mg/L) — 40 0.04 —

Desorption 5 40 0.04 4

Reusability 5 40 0.04 4
Co = initial concentration of investigated metal ions; V = volume of solution; M = amount of adsorbent;
Vd = volume of desorbing solution.

The % removal (% R) of Cd(II) and Cu(II) ions was determined using Equation (1) [13].

%R =
Co − Ce

Co
× 100 (1)

where Ce (mg/L) is the equilibrium concentration of the studied metal ions.
The adsorption capacity (Q, mg/g) of the F1 and F1S samples was determined using

Equation (2) [13].

Q = (Co − Ce)×
V
M

(2)

The desorption efficiency (% D) was determined using Equation (3) [13].

%D =
Cd × Vd

(Co − Ce)V
× 100 (3)

where Cd (mg/L) is the concentration of the studied metal ions in the desorbing agent.

3. Results and Discussion
3.1. Characterization of the Synthesized Samples

The XRD patterns of the F1 and F1S samples are depicted in Figure 1A,B, respectively.
The results indicate that the F1 sample is composed of two phases, i.e., sodium magne-
sium silicate hydroxide (chemical formula: Na2Mg6Si8O22(OH)2; JCPDS No. 01-030-1215)
and sodium magnesium silicate hydrate (Chemical formula: Na2Mg3Si6O16·8H2O; JCPDS
No. 00-013-0310). The mean crystallite size of the F1 sample is 85.34 nm. Sodium mag-
nesium silicate hydrate is responsible for the observed peaks at 2θ = 6.29◦ and 36.19◦. In
addition, the peaks found at 2θ = 19.41◦, 21.81◦, 29.40◦, 47.84◦, 53.09◦, 55.50◦, and 60.36◦

are due, respectively, to the (040), (140), (060), (500), (−202), (−323), and (−2 10 2) miller
indices of sodium magnesium silicate hydroxide. After the union of the nanostructures
with the 2,3-dihydroxybenzaldehyde, as suggested in Scheme 1, the peaks of the nanos-
tructures were so strongly affected that they disappeared, while a broad peak appeared at
2θ = 32◦ [13–15]. This observation agrees with similar work in the literature about the func-
tionalization of several nanomaterials, such as silica and sodium aluminum silicate hydrate,
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with many organic materials, such as thioglycolic acid, 3-bromo-5-chloro-salicylaldehyde,
1-hydroxy-2-acetonaphthone, and dibenzoylmethane [13–15,24].
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The EDX patterns of the F1 and F1S products are depicted in Figure 2A,B, respec-
tively. Furthermore, the results show that the F1 sample is composed of O, Na, Mg, and
Si with weight percentages equal to 38.59%, 5.95%, 16.60%, and 38.86%, respectively,
and the F1S sample is composed of C, N, O, Na, Mg, and Si with weight percentages
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equal to 55.31%, 2.23%, 30.09%, 6.56%, 2.98%, and 12.83%, respectively. The union of
2,3-dihydroxybenzaldehyde with the synthesized nanostructures is responsible for the low
silicon percentage and the presence of carbon (C) and nitrogen (N) in the F1S sample. The
CHN elemental analysis confirmed that the F1S sample contains C, H, and N with weight
percentages equal to 53.28%, 4.32%, and 1.98%, respectively, due to the functionalization of
the nanostructures with 2,3-dihydroxybenzaldehyde [13–15].
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The FT-IR spectra of the F1 and F1S products are depicted in Figure 3A,B, respectively.
Additionally, the results reveal that the bands which were observed at 441 cm−1 and
524 cm−1 in the F1 and F1S products, respectively, are due to the bending vibrations of G-O-
G (G=Si and/or Mg). The bands which appeared at 648 cm−1 and 642 cm−1 in the F1 and
F1S samples, respectively, are due to the internal symmetric stretching of G-O-G. The bands
which were observed at 874 cm−1 and 802 cm−1 in the F1 and F1S samples, respectively,
are due to the external symmetric stretching of G-O-G. The bands which were observed at
1011 cm−1 and 1016 cm−1 in the F1 and F1S samples, respectively, are due to the internal
asymmetric stretching of G-O-G. The bands which appeared at 1389 cm−1 and 1410 cm−1

in the F1 and F1S samples, respectively, are due to the external asymmetric stretching of
G-O-G. The bands which appeared at 1634 cm−1 and 1645 cm−1 in the F1 and F1S products,
respectively, are due to the bending vibration of O-H and/or the stretching vibration of C=N.
The bands which were observed at 3448 cm−1 and 3437 cm−1 in the F1 and F1S samples,
respectively, are due to the stretching vibration of O-H. The bands which were observed at
3000 cm−1 and 1570 cm−1 in the F1S sample are due to the stretching vibrations of =C-H and
C=C aromatic, respectively. Finally, the bands which appeared at 1058 cm−1 and 1158 cm−1

in the F1S sample are due to the stretching vibration of C-O [13–15]. Thus, the appearance
of many bands of 2,3-dihydroxybenzaldehyde as shown above confirms the successful
functionalization of the nanostructures by this organic substance. This observation agrees
with similar work in the literature about the functionalization of several nanomaterials,
such as silica and sodium aluminum silicate hydrate, with many organic materials, such
as thioglycolic acid, 3-bromo-5-chloro-salicylaldehyde, 1-hydroxy-2-acetonaphthone, and
dibenzoylmethane [13–15,24].

The FE-SEM images of the F1 and F1S samples are depicted in Figure 4A,B, respec-
tively. The results reveal that the F1 product consists of spheres, cubes, and irregular
shapes with an average grain size of 115 nm. Furthermore, the F1S product consists of
spherical conglomerates consisting of needle-like shapes due to the functionalization of the
nanostructures with 2,3-dihydroxybenzaldehyde. The anticipated morphology following
the functionalization of the nanostructures with 2,3-dihydroxybenzaldehyde results from
the presence of 2,3-dihydroxybenzaldehyde on the backbones of the nanostructures, which
encapsulate the nanostructures. This observation agrees with similar work in the literature
about the functionalization of several nanomaterials, such as silica and sodium aluminum
silicate hydrate, with many organic materials, such as thioglycolic acid, 3-bromo-5-chloro-
salicylaldehyde, 1-hydroxy-2-acetonaphthone, and dibenzoylmethane [13–15,24].

The obtained N2 adsorption/desorption isotherms of the F1 and F1S products are
depicted in Figure 5A,B, respectively. The results confirm that the obtained curves are IV
types [16]. Additionally, the surface properties of the F1 and F1S samples, such as BET
surface area, total pore volume, and average pore size, are shown in Table 2. Since the
average pore size is greater than 2, the F1 and F1S samples are mesoporous. Furthermore,
the BET surface area and total pore volume decreased as a result of the functionalization of
the nanostructures with 2,3-dihydroxybenzaldehyde. The anticipated decline in the surface
area following the functionalization of the nanostructures with 2,3-dihydroxybenzaldehyde
is a result of the presence of 2,3-dihydroxybenzaldehyde on the backbones of the nanostruc-
tures, which prevent nitrogen gas from entering the pores of the nanostructures during the
BET method. This observation agrees with similar work in the literature about the function-
alization of several nanomaterials, such as silica and sodium aluminum silicate hydrate,
with many organic materials, such as thioglycolic acid, 3-bromo-5-chloro-salicylaldehyde,
1-hydroxy-2-acetonaphthone, and dibenzoylmethane [13–15,24].
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Table 2. The BET surface area, total pore volume, and average pore size of the F1 and F1S samples.

Surface Properties
Sample

F1 F1S

BET surface area (m2/g) 199.89 12.95

Total pore volume (cc/g) 0.2126 0.0172

Average pore size (nm) 2.1275 2.214

3.2. Removal of Cd(II) and Cu(II) Ions
3.2.1. Effect of pH

The pH plays a crucial role in the solid-phase extraction of heavy metals. A pH range
of 2.5–7.5 was used to investigate the effect of pH on the % removal of cadmium and copper
ions as well as the uptake capacity of the F1 and F1S samples, as is shown in Figure 6A,B,
respectively. The results establish that the adsorption capacity of the F1 and F1S products,
or the % removal of cadmium and copper ions, increased as the pH value increased from
2.5 to 7.5. Hence, pH 7.5 was nominated as the best value for all the experiments. At pH
7.5, the % removal of cadmium ions exploiting the F1 and F1S samples was 39.83% and
74.86%, respectively. Additionally, the uptake capacity of the F1 and F1S samples toward
cadmium ions was 79.66 mg/g and 149.72 mg/g, respectively. At pH 7.5, the % removal of
copper ions using the F1 and F1S samples was 50% and 85.49%, respectively. Furthermore,
the uptake capacity of the F1 and F1S samples toward copper ions was 100 mg/g and
170.98 mg/g, respectively. As is shown in Scheme 2, the % removal or adsorption capacity
of the F1 and F1S adsorbents decreases in an acidic medium because the adsorbents were
surrounded by positive hydrogen ions (H+), which repel the cadmium or copper ions. On
the other hand, the % removal or adsorption capacity of the F1 and F1S adsorbents increases
in a basic medium because the adsorbents were surrounded by negative hydroxide ions
(OH−), which attract the cadmium or copper ions.

3.2.2. Effect of Time

The contact time plays a crucial role in the solid-phase extraction of heavy metals. A
contact time range of 10–120 min was used to investigate the effect of time on the % removal
of cadmium and copper ions as well as the adsorption capacity of the F1 and F1S samples,
as is shown in Figure 7A,B, respectively. The results establish that the adsorption capacity of
the F1 and F1S samples, or the % removal of cadmium and copper ions, increased as the time
value increased from 10 min to 80 min. Additionally, when the contact time was increased
from 80 min to 120 min, the % removal of the studied metal ions, or adsorption capacity
of the F1 and F1S samples, was not significantly affected due to the saturation of active
centers. Therefore, a time of 80 min was chosen as the optimal time for all the experiments.
At 80 min, the % removal of cadmium ions using the F1 and F1S samples was 40% and 74%,
respectively. Furthermore, the capacity of the F1 and F1S samples to adsorb cadmium ions
was 80 mg/g and 148 mg/g, respectively. At 80 min, the % removal of copper ions using
the F1 and F1S samples was 50% and 86%, respectively. Additionally, the uptake capacity
of the F1 and F1S samples toward copper ions was 100 mg/g and 172 mg/g, respectively.
The obtained results were examined using the pseudo-first-order and pseudo-second-order
kinetic models as clarified in Equations (4) and (5), respectively [24].

log (Qe − Qt) = log Qe −
k1

2.303
t (4)

t
Qt

=
1

k2Q2
e
+

1
Qe

t (5)

where, Qt (mg/g) is the quantity of cadmium or copper ions adsorbed at time t (min), Qe
(mg/g) is the adsorption capacity of the F1 and F1S samples at equilibrium, k1 (1/min) is
the rate constant of the pseudo-first-order model, and k2 (g/mg.min) is the rate constant of
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the pseudo-second-order model. Figure 8A,B represents the plots of log (Qe − Qt) and t/Qt
versus t, respectively. Table 3 contains the constants of the pseudo-first-order and pseudo-
second-order kinetic models. The results follow the pseudo-second-order model more than
the pseudo-first-order model because of the large value of the pseudo-second-order coefficient
of determination (R2) compared with its counterpart in the pseudo-first-order model.
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Figure 6. The effect of pH on the % removal of copper and cadmium ions (A) and the adsorp-
tion capacity of the F1 and F1S samples (B). Experimental conditions: concentration = 200 mg/L,
volume = 40 mL, amount of adsorbent = 0.04 g, and time = 180 min.
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3.2.3. Effect of Temperature

The temperature plays a crucial role in the solid-phase extraction of heavy metals. An
adsorption temperature range of 298–328 K was used to investigate the effect of temperature
on the % removal of cadmium and copper ions as well as the uptake capacity of the F1
and F1S samples, as is shown in Figure 9A,B, respectively. The results establish that the
adsorption capacity of the F1 and F1S products, or the % removal of cadmium and copper
ions, decreased as the temperature value increased from 298 K to 328 K. At 298 K, the %
removal of cadmium ions using the F1 and F1S samples was 40% and 74%, respectively.
At 328 K, the % removal of cadmium ions using the F1 and F1S samples was 10.89% and
34.86%, respectively. At 298 K, the capacity of the F1 and F1S samples to adsorb cadmium
ions was 80 mg/g and 148 mg/g, respectively. At 328 K, the capacity of the F1 and F1S
samples to adsorb cadmium ions was 21.77 mg/g and 69.72 mg/g, respectively. At 298 K,
the % removal of copper ions using the F1 and F1S samples was 50% and 86%, respectively.
At 328 K, the % removal of copper ions using the F1 and F1S samples was 17.04% and 57%,
respectively. At 298 K, the capacity of the F1 and F1S samples to adsorb copper ions was
100 mg/g and 172 mg/g, respectively. At 328 K, the capacity of the F1 and F1S samples to
adsorb copper ions was 34.07 mg/g and 114 mg/g, respectively. As the temperature rises,
cadmium and copper ions are liberated from the adsorbent and returned to the solution,
speeding up the desorption process and lowering the percentage removal or adsorption
capacity. Thus, a temperature of 298 K was select as the best value for all the experiments.
The thermodynamic parameters for the adsorption process of cadmium and copper ions can
be obtained by calculating the change in entropy (∆S◦, kJ/mol kelvin), the change in free
energy (∆G◦, kJ/mol), and the change in enthalpy (∆H◦, kJ/mol) using Equations (6)–(8)
and Figure 10 [24].

lnKd =
∆S

◦

R
− ∆H

◦

RT
(6)

∆G
◦
= ∆H

◦ − T∆S
◦

(7)

Kd =
Qe

Ce
(8)
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Figure 7. The effect of contact time on the % removal of copper and cadmium ions (A) and the ad-
sorption capacity of the F1 and F1S samples (B). Experimental conditions: concentration = 200 mg/L,
volume = 40 mL, amount of adsorbent = 0.04 g, and pH = 7.5.
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ions using the F1 and F1S samples.
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Table 3. The constants of the pseudo-first-order and pseudo-second-order kinetic models for the
removal of copper and cadmium ions using the F1 and F1S samples.

Conditions
Qe (mg/g) Constants R2

Pseudo-First-
Order

Pseudo-
Second-Order k1 (1/min) k2

(g/mg·min)
Pseudo-First-

Order
Pseudo-

Second-Order

F1 + Cd(II) ions 69.86 81.04 0.0161 0.00037 0.9809 0.9948

F1S + Cd(II) ions 126.52 157.23 0.0185 0.00021 0.9914 0.9946

F1 + Cu(II) ions 92.66 112.74 0.0154 0.00018 0.9890 0.9996

F1S + Cu(II) ions 113.02 179.86 0.0272 0.00043 0.9771 0.9967

T (K) is the adsorption temperature, Kd (L/g) is the distribution constant, and R
(kJ/mol kelvin) is the gas constant. Table 4 contains the thermodynamic constants. The
adsorption processes of copper and cadmium ions are exothermic and chemical because
the change in enthalpies is negative and greater than 40 kJ/mol. Additionally, the negative
values of the change in free energy confirmed the spontaneous nature of the adsorption
processes. Furthermore, positive values of change in entropy indicate greater randomiza-
tion at the solid/solution interface following the adsorption of the cadmium and copper
ions by the F1 and F1S samples.

Table 4. The thermodynamic constants for the removal of cadmium and copper ions using the F1
and F1S samples.

Conditions ∆H◦ (kJ/mol) ∆S◦ (kJ/mol Kelvin)
∆G◦ (kJ/mol)

298 308 318 328

F1 + Cd(II) ions −45.47 0.1555 −91.79 −93.35 −94.91 −96.46

F1S + Cd(II) ions −44.32 0.1399 −86.01 −87.40 −88.80 −90.20

F1 + Cu(II) ions −43.00 0.1444 −86.03 −87.47 −88.91 −90.36

F1S + Cu(II) ions −42.39 0.1267 −80.16 −81.42 −82.69 −83.96

3.2.4. Effect of Concentration

The initial concentration of metal ions plays a crucial role in the solid-phase extraction
of heavy metals. A concentration range of 80–280 mg/L was used to investigate the effect of
concentration on the % removal of cadmium and copper ions as well as the uptake capacity
of the F1 and F1S samples, as is shown in Figure 11A,B, respectively. The results establish
that the adsorption capacity of the F1 and F1S products increased and the % removal of
cadmium and copper ions decreased as the concentration value increased from 80 mg/L
to 280 mg/L. The obtained results were examined using the Langmuir and Freundlich
equilibrium isotherms as clarified in Equations (9) and (10), respectively [24].

Ce

Qe
=

1
KLQm

+
Ce

Qm
(9)

lnQe = lnKF +
1
n

lnCe (10)
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Figure 9. The effect of adsorption temperature on the % removal of copper and cadmium
ions (A) and the uptake capacity of the F1 and F1S samples (B). Experimental conditions:
concentration = 200 mg/L, volume = 40 mL, pH = 7.5, amount of adsorbent = 0.04 g, and
time = 80 min.
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Figure 10. The plots of lnKd versus 1/T for the removal of cadmium and copper ions using the F1
and F1S samples.

Qm (mg/g) and KL (L/mg) are the maximum adsorption capacity and constant of the
Langmuir isotherm, respectively, and 1/n and KF (mg/g)(L/mg)1/n are the heterogeneity
constant and constant of the Freundlich isotherm, respectively.

Figure 12A represents the plots of Ce/Qe versus Ce. Figure 12B represents the plots
of ln Qe versus ln Ce. Table 5 contains the constants of the Langmuir and Freundlich
equilibrium isotherms. The results follow the Langmuir isotherm more than the Freundlich
because of the large value of the Langmuir coefficient of determination (R2) compared with
its counterpart in the Freundlich. Additionally, the maximum uptake capacity of the F1 and
F1S samples toward cadmium ions was 89.44 mg/g and 155.04 mg/g, respectively, and the
maximum uptake capacity of the F1 and F1S samples toward copper ions was 103.73 mg/g
and 177.94 mg/g, respectively.
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Figure 11. The effect of initial concentration of copper and cadmium ions on the % removal (A) and
the adsorption capacity of the F1 and F1S samples (B). Experimental conditions: volume = 40 mL,
pH = 7.5, temperature= 298 K, amount of adsorbent = 0.04 g, and time = 80 min.
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Figure 12. The Langmuir (A) and Freundlich (B) equilibrium isotherms for the removal of cadmium
and copper ions using the F1 and F1S samples.
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Table 5. The calculated constants of the Langmuir and Freundlich equilibrium isotherms for the
removal of cadmium and copper ions using the F1 and F1S samples.

Conditions
Langmuir Freundlich

Qm (mg/g) KL (L/mg) R2 Qm (mg/g) KF (mg/g)(L/mg)1/n R2

F1 + Cd(II) ions 89.44 0.0969 0.9948 84.42 51.98 0.8270

F1S + Cd(II) ions 155.04 0.2605 0.9929 161.37 86.21 0.9396

F1 + Cu(II) ions 103.73 0.3562 0.9989 101.95 82.79 0.9598

F1S + Cu(II) ions 177.94 1.124 0.9998 188.15 125.49 0.9180

The % removal of the studied metal ions using the F1 and F1S samples was compared
with that of many adsorbents in aforementioned studies, such as chitosan/MnFe2O4 com-
posite, dithiocarbamate/Fe3O4/reduced graphene oxide composite, FAU zeolite, calcium
titanate, silver/multiwalled carbon nanotubes, and guanyl-modified cellulose, as is clarified
in Table 6 [25–30]. The results prove the adsorption superiority of the F1 and F1S samples
over these other adsorbents. The synthesized adsorbents had the highest adsorption capac-
ity, which made them superior compared with other adsorbents in removing Cd(II) and
Cu(II) ions. The reason for this is that the F1S adsorbent can undertake ion exchange with
Cd(II) or Cu(II) ions and form 6-membered ring chelates with Cd(II) and Cu(II) ions as
a result of the presence of C=N and OH groups, as is shown in Scheme 3. Figure 13A,B
represents the EDX patterns of the Cu(II)–F1S and Cd(II)–F1S, respectively. The success of
the ion exchange and chelation mechanisms of the F1S sample with Cu(II) ions is evident
through the disappearance of sodium and the appearance of copper at 0.96 eV and 7.85 eV,
as is shown in Figure 13A. The success of the ion exchange and chelation mechanisms of
the F1S sample with Cd(II) ions is evident through the disappearance of sodium and the
appearance of cadmium at 3.04 eV, as is shown in Figure 13B. Figure 14A,B represents the
FT-IR spectra of the Cu(II)–F1S and Cd(II)–F1S, respectively. The decrease in the value
of the band formed at 1645 cm−1 (stretching vibration of C=N) to 1620 cm−1 (in the case
of copper adsorption) or 1630 cm−1 (in the case of cadmium adsorption) is evidence of
complexation, as is shown in Scheme 3. The new bands at 473 cm−1 and 444 cm−1 are due
to the stretching vibrations of the Cu-O and Cd-O, respectively.

Table 6. Comparison between the uptake capacity of the synthesized samples (F1 and F1S) and that
of other adsorbents.

Adsorbent
Adsorption Capacity (mg/g)

Ref.
Cd(II) Cu(II)

Chitosan/MnFe2O4 composite 9.73 43.94 [25]

Dithiocarbamate/Fe3O4/reduced
graphene oxide composite 116.30 113.60 [26]

FAU zeolite 74.07 57.80 [27]

Calcium titanate 82.60 66.40 [28]

Silver/multiwalled carbon nanotubes 54.92 58.02 [29]

Guanyl-modified cellulose 68 83 [30]

F1 89.44 103.73 This study

F1S 155.04 177.94 This study
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The F1 adsorbent is characterized by the presence of negative charges that were
neutralized by positive Na(I) ions due to the substitution of some divalent magnesium ions
for some tetravalent silicon ions in the crystal lattice of the nanostructures. Subsequently,
positive sodium ions can be exchanged by cadmium or copper ions, as is shown in Scheme 3.
Figure 15A,B represents the EDX patterns of the Cu(II)–F1 and Cd(II)–F1, respectively. The
success of the ion exchange mechanism of the F1 sample with Cu(II) ions is evident through
the disappearance of sodium and the appearance of copper at 0.96 eV and 7.85 eV, as is
shown in Figure 15A. The success of the ion exchange mechanism of the F1 sample with
Cd(II) ions is evident through the disappearance of sodium and the appearance of cadmium
at 3.04 eV, as is shown in Figure 15B.

3.2.5. Effect of Desorption and Reusability

Several eluting agents such as HCl, HNO3, thiourea, and EDTA disodium salt were
used, as is clarified in Figure 16. The results show that EDTA disodium salt achieved
the highest % D. This increase in the removal rate when using EDTA disodium salt was
obtained because EDTA has a greater affinity to form stable chelate complexes by reacting
with aluminum ions [24]. The EDTA molecule has six potential sites for bonding with the
aluminum ion (the four carboxylate groups and the two amino groups).
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Figure 16. Desorption of copper and cadmium ions from the F1 and F1S samples using several
eluting agents. Experimental conditions: concentration = 5 mg/L, volume of copper or cadmium
solution = 40 mL, amount of adsorbent = 0.04 g, volume of eluting agent = 4 mL, temperature = 298 K,
pH = 7.5, and time = 80 min.

Reusability experiments proved the possibility of using F1 and F1S samples to adsorb
cadmium and copper ions five consecutive times without losing their efficiency, as is
clarified in Figure 17.
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Figure 17. Reusability of the F1 and F1S samples for the adsorption of cadmium and copper ions.
Experimental conditions: concentration = 5 mg/L, volume of Cd(II) or Cu(II) solution = 40 mL,
amount of adsorbent = 0.04 g, volume of eluting agent = 4 mL, temperature = 298 K, pH = 7.5, and
time = 80 min.

4. Conclusions

In this work, sodium magnesium silicate hydroxide/sodium magnesium silicate hy-
drate nanostructures were easily synthesized and then modified using 2,3-dihydroxybenza-
ldehyde as a novel nanocomposite. The anticipated decline in the surface area following
the functionalization of the nanostructures with 2,3-dihydroxybenzaldehyde resulted from
the presence of 2,3-dihydroxybenzaldehyde on the backbones of nanostructures, which
prevents nitrogen gas from entering the pores of the nanostructures during the BET method.
The morphology of the synthesized nanostructures changed from spheres, cubes, and
irregular shapes to spherical conglomerates consisting of needle-like shapes due to func-
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tionalization of the nanostructures with 2,3-dihydroxybenzaldehyde. The synthesized
nanostructures and nanocomposite samples were used for the efficient removal of cadmium
and copper ions from aqueous media using the ion exchange and chelation adsorption
procedures, respectively. The synthesized nanostructures and nanocomposites are promis-
ing adsorbents in terms of their facile synthesis, low cost, and effectiveness. The factors
affecting the adsorption process, such as pH, time, temperature, and concentration, were
studied,. The maximum capacity of the synthesized nanostructures and nanocomposite
samples to adsorb cadmium ions is 89.44 mg/g and 155.04 mg/g, respectively, and the max-
imum capacity of the synthesized nanostructures and nanocomposite samples to adsorb
copper ions is 103.73 mg/g and 177.94 mg/g, respectively.
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